
DESIGN OF A CHANNEL ERROR SIMULATOR

USING VIRTUAL INSTRUMENT TECHNIQUES

FOR THE INITIAL TESTING OF TCP/IP AND

SCPS PROTOCOLS

Dr. Stephen Horan

Ru-hai Wang

April 1, 1999 NMSU-ECE-99-002

DESIGN OF A CHANNEL ERROR SIMULATOR

USING VIRTUAL INSTRUMENT TECHNIQUES
FOR THE INITIAL TESTING OF TCP/IP AND

SCPS PROTOCOLS

Dr. Stephen Horan and Ru-hai Wang

Lujan Space Tele-Engineering Program
Klipsch School of Electrical and Computer Engineering

New Mexico State University

Box 30001, MSC 3-0

Las Cruces, NM 88003-8001

New Mexico State University Technical Report
NMSU-ECE-99-002

April 1, 1999

Section

Acronym List

I

II

III

III.1

III.2

III.3

III.4

III.4. I

III.4.2

IV

V

V.1

V.2

V.3

Background

Design Goals

Virtual Instrument Design

Introduction

Method of Error Generation

Selection of VI Methodology

VI Components

User Interface

VI Programming

Virtual Instrument Validation

Sample Tests

Test Configuration

FTP Tests

SCPS FP Tests

VI Summary and Conclusions

VII References

Appendix - Test Data

Table of Contents

page

ii

1

2

3

3

3

5

6

6

8

12

14

14

14

17

21

22

23

-i-

ACRONYM LIST

AWGN

BER

CCSDS

Eb/No

fp

ftp

NMSU

PC

SCPS

SGLS

TCP/IP

VI

VME

Additive White Gaussian Noise

Bit Error Rate

Consultative Committee for Space Data Systems

Energy-per-bit-to-Noise-density Ratio

File Protocol

File Transport Protocol

New Mexico State University

Personal Computer (Intel/Windows based configuration)

Space Communications Protocol Specification

Space-to-Ground Link Simulator

Transmission Control Protocol/Internet Protocol

Virtual Instrument

Versa Module Eurocard

-ii-

SECTION I - BACKGROUND

There exists a need for designers and developers to have a method to conveniently test a variety of

communications parameters for an overall system design. This is no different when testing network

protocols as when testing modulation formats. In this report, we discuss a means of providing a

networking test device specifically designed to be used for space communications. This test device

is a PC-based Virtual Instrument (VI) programmed using the LabVIEW TM version 5 [1] software

suite developed by National Instruments TM. This instrument was designed to be portable and usable

by others without special, additional equipment. The programming was designed to replicate a

VME-based hardware module developed earlier at New Mexico State University (NMSU) [2] and

to provide expanded capabilities exceeding the baseline configuration existing in that module.

This report describes the design goals for the VI module in the next section and follows that with a

description of the design of the VI instrument. This is followed with a description of the validation

tests run on the VI. An application of the error-generating VI to networking protocols is then given.

-1-

SECTION II - DESIGN GOALS

The design of the Space-to-Ground Link Simulator (SGLS) for modeling satellite channel error

scenarios was based on the following goals to replicate the statistical characteristics of a satellite

channel:

a. Allow for simultaneous bi-directional data flow (forward and return channels);

b. Allow user-selectable error rates and statistical descriptions of the channel;

c. Allow time-variable error rates over several minutes as would be found in a satellite pass;

d. Allow different data rates on the forward and retum links as would be found in satellite links,

e.g. 2400 baud forward, 57600 baud;

e. Provide for a simulated ¼-second delay as typically found in satellite channels.

The first design goal is documented in this report. As additional modules are developed and tested,

they will be individually documented to provide an overall VI architecture for the channel error

simulator.

By using a PC-based configuration and not a generic networking simulator package, we believe the

VI configuration to allow for several advantages, including:

a. Allowing tests on actual data streams with operating system interactions included and not

simulations of those data streams;

b. Providing portability so that can be placed in a lap-top PC with appropriate interface cables;

c. Can be configured to work with multiple networking and communications technologies (RS-

232, RS-422, Ethemet, etc.).

The simulations would be conducted at baseband and not include any effects of modulation. This

is done for two reasons: it allows for simulating network channels other than space channels, and

we are really interested in testing the performance of the networking protocols while the modulation

provides an added layer of complexity to the simulation environment without providing more

accurate results when looking at protocol performance. If there are modulation losses in the system,

the bit error rate and statistical descriptions can be adjusted to match the expected performance

without modulating the data explicitly.

-2-

SECTION III - VIRTUAL INSTRUMENT DESIGN

III.1 INTRODUCTION

In this section, we develop the design of the Virtual Instrument forming the heart of the SGLS

channel error simulator. This will include a description of the error generation methodology as well

as the programming to accomplish the error generation functions. A full description of the software

modules to perform the necessary functions is also given.

As documented in [2], an initial hardware approach was developed to realize a methodology for

generating the channel error profile. This initial development was based on a custom VME module

that used a local disk file containing the error vectors. The module would perform the Exclusive-Or

of the data with an error vector derived from a statistical generator developed in [3]. The error

vector was selected by the user when the controlling C program was started and the vector was

loaded from a disk file inside the VME chassis to the custom VME module. The data input was over

one RS-422 connector on the VME module and the resulting modified data was output over another

RS-422 connector on the VME module.

There were several problems with this approach. The major problem was that the VME module was

uni-directional (forward or return link but not both without wire-wrapping another module).

Therefore real protocol testing was not readily available. Secondly, the time-variable error

generation based on a single simulated satellite pass did not work properly due to the C control

program continuing to fault before completion. Additionally, this program was not well documented

thereby making changes difficult. Finally, there was a hardware failure in the VME module. At this

point, another approach was sought. The Virtual Instrument method appeared to be appropriate for

the solution to the needs of the module development.

III.2 METHOD OF ERROR GENERATION

The error generation methodology used in the VI is the same as the one used in the hardware module.

It is based upon the known relationship from digital logic that if one takes a digital data stream of

logic 0s and 1s and then performs an Exclusive-Or (Ex-Or) operation on the data stream then every

-3-

place where the data stream is Ex-Ored with a logic O, the data is unchanged while every place where

the data stream is Ex-Ored with a logic 1, the data symbol is complemented [4]. This can be used

to model the channel error generation process: the channel can be modeled as an Ex-Or gate that

randomly operates on the input data stream. This is illustrated in Figure 1 where a single bit error

is generated in the output data stream.

Input Data Stream: ... 0 0 0 1 1 0 0 1 ...

Error Vector: -.. 0 0 0 0 0 1 0 0 ...

Output Data Stream: --. 0 0 0 1 1 1 0 1 .--

bit error location

Figure 1 - Channel error generation process.

To properly model a channel, the user needs a proper statistical description of the channel error

generation mechanism. A typical channel error statistical description is Additive White Gaussian

Noise (AWGN) where the errors are described by a Gaussian random process parameterized by the

link Energy-per-bit-to-Noise-densiry ratio (Eb/No) [5]. Previous work at NMSU [3] generated a

computer program whereby the user could specify an Eb/No value, the number of bit errors to be

generated, and the type of statistics to be used and the program would produce a vector meeting this

specification. The vector would be all 0s except for a 1 at the locations where the bit errors are to

occur. The 1s would be distributed over the vector according to the statistics specified by the user.

The program was designed to develop vectors for AWGN, radio frequency interference, and mixed

noise-and-interference environments. Other statistical distributions could be generated by modifying

the program to generate the desired statistical model. For all of the testing done here, the AWGN

statistical model was used.

-4-

111.3 SELECTION OF VI METHODOLOGY

The Virtual Instrument was designed using the LabVIEW TM programing architecture. LabVIEW was

chosen for the following reasons:

a. The programming language is available on PC, Macintosh, and UNIX platforms;

b. The programming language is object-oriented and allows for modular code development;

c. The programming language provides for convenient access to PC communications ports (RS-

232 and Ethernet) for data flow through the modules.

LabVIEW is a graphical programming language that is data driven and not strictly sequence driven

(it only operates on data as it becomes available). Additionally, LabVIEW manages all memory and

I/O functions that normally the high-level language programmer would need to manage through

programs and drivers.

The VI error generation module was designed to provide the following capabilities using the

programming language primitives and built-in modules:

a. Allow for data flow in two directions simultaneously;

b. Allow user-selectable bit error rates for both data flow directions;

c. Allow bit error rate vectors to be pre-computed and loaded prior to data flow;

d. Use standard communications ports for data flow.

The general operation of the VI follows the following steps:

a. The user initializes the VI and sets ports for data input and output (baud rate and port

number);

b. The VI reads each directional serial port to determine if data is present for processing;

c. The VI is to XOR the data with the error vector;

d. The VI writes the data modified by the errors to the appropriate directional data port;

e. The VI continuously loops as quickly as possible (no wait states: if no data available at the

input port, loop back an poll again) to process the data with minim delay.

By investigating the capabilities of LabVIEW, it was evident that it would be able to support these

operations.

-5-

III.4 VI COMPONENTS

The SGLS VI has two parts to it: the user interface and the programming language. In this section,

we will describe the details of both components. Consulting the LabVIEW programming manuals

may be necessary if the reader is not familiar with LabVIEW concepts.

111.4.1 User Interface

The user interface for the error generation VI provides the following features:

a. Select the communications port for the forward and return data links. For this module, the

RS-232 communications port in the computer is used. The user decides ifCOM1 or COM2

is to be used for the forward or return link. LabVIEW designates COM1 as port 0, COM2

as port 1, etc. on the PC platform.

b. Select the baud rate for the forward and return links. Normally, standard RS-232 rates will

be selected. Most PC communications ports support baud rates from 2400 bps through

115200 bps.

c. Provide the user with real-time indications of data flow. This is done by showing the input

queue size on each communications port upon each program iteration.

d. Provide the user with a dialog box to select the desired bit error profile for the forward and

retum links. The current test configuration provides error files for Eb/No profiles in AWGN

from 0.0 dB through 11 dB. The commonly-used files are listed in Table 1.

e. Provide the user with a run-time means to disable the software processing.

The user interface for the SGLS VI is illustrated in Figure 2. The input for the baud rate is done

using the LabVIEW Text Tool on the panel. The forward and return data port can be selected by

incrementing the selection slide using the Operating Tool. The software enable/disable is done using

the toggle switch on the VI panel. This needs to set to the ON position prior to starting the VI

operation. When the user has entered the data, set the enable switch to ON, then the LabVIEW

execution is initiated by clicking the left-pointing arrow ('=_) on the command bar using the mouse.

-6-

Table 1. Typical Statistical Error Files for Use with AWGN

I. 1000 bit errors per file

File Name Target Eb/No (dB) BER File Size (K-Bytes)

a825k.dat 8.25 0.0001315 929

a850k.dat 8.50 0.00007865 1553

a875k.dat 8.75 0.00005268 2318

a900k.dat 9.00 0.00002170 5626

a925k.dat 9.25 0.00001727 7069

a950k.dat 9.50 0.00001246 9798

a975k.dat 9.75 0.00000860 14193

a1000k.dat 10.00 0.00000477 25599

II. 100 bit errors per file

File Name Target Eb/No (riB) BER File Size (K-Bytes)

a825 c.dat 8.25 0.0001271 97

a850c.dat 8.50 0.00008332 147

a875c.dat 8.75 0.00005388 227

a900c.dat 9.00 0.00002165 564

a925 c.dat 9.25 0.00001741 702

a950c.dat 9.50 0.00001177 1037

a975c.dat 9.75 0.00000869 1405

2578a1000c.dat 10.00 0.00000474

a1025c.dat 10.25 0.00000289

a1050c.dat 10.50 0.00000298

a1075c.dat 10.75 0.00000094

11.00 0.00000095al 100c.dat

4216

4098

12925

12843

-7-

Table 1 (cont.). Typical Statistical Error Files for Use with AWGN

III. 10 bit errors per file

File Name Target Eb/No (dB) BER File Size (K-Bytes)

a825d.dat 8.25 0.0001908 7

a850d.dat 8.50 0.0001605 8

a875d.dat 8.75

a9OOd.dat 9.00

a925d.dat 9.25

0.00004423 28

0.00002935 42

0.00001678 73

a950d.dat 9.50 0.00001237 99

a975d.dat 9.75 0.00000939 130

al000d.d_ 10.00 0.00000432 283

a1025d.d_ 10.25 0.00000373 328

al050d.dat 10.50 0.00000214 570

a1075d.dat 10.75 0.00000094 1304

all00d.d_ 11.00 0.00000082 1485

IV. Zero Errors Per File

infinite.dat _ 0 1

The program will then present the dialog box for the error file selection which is done using a

standard Windows dialog box and can be selected with a mouse.

111.4.2 Vl Programming

The SGLS LabVIEW program is divided into two sections: module initialization and the processing

loop as illustrated in Figure 3. During the initialization phase, the user input is taken from the VI

front panel and is passed to the serial port control elements. This includes setting the forward and

return communications port numbers, and the communications baud rate. The serial port

initialization assumes the following communications port parameters to be in place and changed by

-8-

Figure 2 - User interface for channel error VI.

the user or the data sending device:

a. 8 data bits, 1 stop bit and no parity bits on each byte transferred,

b. No flow control is to be used to better simulate direct transmission through a radio channel,

and

c. A null modem cable will be used to connect to the serial port (a straight-through cable will

not work properly).

Because no flow control is used on the RS-232 port, a 16-K byte buffer is used to buffer the input

data and keep from losing bytes. After setting the communications ports, the user is presented with

a standard dialog box requesting the file specification for the forward and return link error vector

files. The file path and name can be input directly or a mouse can be used to click through the

selection of the drive, path, and file name.

The processing is controlled using a While Loop structure with no timing breaks and with

continuous operation as long as the front panel toggle switch is in the ON position. The processing

loop proceeds as follows:

-9-

sqlsSa.vi Diagram " _!1_1_-

File Ed_ 9Ja_f_le Erojoci _ndo_w_s I-to17

_ [] _ I16pt Aopiication Fant .__ _ _

lqeturn Link Data PorI I

I Inetum UnkBaudl ._ _ _

t . :

ISelectReamLinkErrorFile] _ I I _ ! I __-._ :

I 'i I [IIIfILl IIII

I

,I I

Figure 3 - Program for channel error VI

-I

._9

a.

b°

c°

d.

Each input communications port is queried to determine if at least one byte of data is

available (the loop only processes integer byte multiples of data) for processing,

For each port, if the port has no data to be processed, nothing is done for that port on the

loop iteration.

If the port has data to be processed, all of the available bytes are read into the VI and a

variable type change is made from string type to unsigned integer type. This step does not

perform any modification to the data but makes the data type compatible for further

processing.

For each communications port having data on this iteration, the data are sequentially

processed in a Do Loop over all of the input bytes that were read in. Each byte of data is Ex-

-10-

e°

f.

g.

Ored with the next byte of the error vector and the position index along the error vector is

incremented as each byte is processed.

As the index along the error vector is incremented, if it comes to the end of the error vector,

then the index is reset to the start of the error vector.

After all of the input bytes have been Ex-Ored with the error vector, the variable type is

changed back from unsigned integer to string type and written to the indicated output port.

The While Loop then starts the next iteration.

Processing will continue until the user either places the toggle switch on the VI front panel at the

OFF position using the Operating Tool or when the user clicks on the LabVIEW stop button with

the mouse.

-I1-

SECTION IV - VIRTUAL INSTRUMENT VALIDATION

The basic SGLS instrument validation was performed by working with each component of the VI

as a self-contained sub module and using the VI display interface options to place debug displays

at each step of the way. With these debug options in place, the data flow was monitored for correct

operation. Typical debug tests included

a. Validation of the stepping through the error vector indices and proper roll over to the start

of the vector when the end-of-vector count is reached;

b. Monitoring the input queue size to verify that it did not exceed 16384 bytes at which point

data can be lost;

c. Verification of the Exclusive-Or operation by sending individual characters through the VI

and monitoring the corrupted character results.

A typical throughput test of the VI compared the effective transfer rate to send a 76 KB file using

a PC Hyperterminal data transfer test. In this test, the XMODEM protocol was used to transport the

file through both the channel error simulator with the channel error rate set to zero errors (the

processing continued but the error vector was all 0s) and via a direct null modem connection. The

results of this test are shown in Table 2. Generally, the VI made the process run a bit slower but the

queue was always bounded in length. From this we conclude that the VI presented no significant

degradation to the transfer process.

Table 2. VI XMODEM Throughput Test

Baud Rate Straight Through VI in the Loop VI Max. Queue Size

9600 7880 bps 7150 bps < 10 B

19200 15100 bps 13200 bps < 10 B

38400 23200 bps 23100 bps < 10 B

57600 29400 bps 30500 bps < 10 B

115200 31100 bps 30700 bps < 100 B

-12-

A second timing validation test was run using the actual computers and protocols that would be used

in the protocol testing. In this test, various files were sent using the TCP/IP tip service at different

baud rates. The total time to transmit the files under the condition that the SGLS made no errors

in transmitting the data (an error vector of all 0s is used so that the timing remains the same) is

compared with the time to transmit the same files over a short, straight null modem cable. A plot

of the results is shown in Figure 4. Here we can see that the curves for the file transfer times when

using the SGLS and a null modem cable are virtually the same. There was a slight difference for

100 K-byte flies but the differences in the mean times were less than the variations in the mean

times. We conclude that the SGLS causes no significant transmission delay nor does it introduce

any link errors of its own, e.g. dropping bytes.

I0000

1000

1oo

E 10
am

I--

0.1

1 10 100 1000

File Size (KB)

cible (M00) SGLS (g_0)

clble (lS200) SGLS (ID200)

c|l_e (ATS00I SGLS (57100)

clblo (115200) SGL$ (116200)

Figure 4 - Comparison of file transfer time between using the SGLS and a null modem cable

for ftp file transfer services.

-13-

SECTION V - SAMPLE TESTS

V.1 TEST CONFIGURATION

The tests run with the SGLS were conducted using the configuration illustrated in Figure 5. The

source and destination computers for the file transfer were two, identical Gateway PCs with 133

MHz processor speeds and 16 MB of memory running Red Hat Linux version 5.2. The computers

were connected to the SGLS using commercially-obtained 6-foot null modem cables. Tests were

run at channel Bit Error Rates (BER) of 0, 10 6, 10 5, and 10.4 using the files listed in Table 3. Files

to be transferred were random text files having lengths of 1 KB, 10 KB, 100 KB and 1000 KB. For

each file transmission test, ten runs were performed and the average time to complete the

transmission recorded. In some of the tests at the high BER values, a transmission could not be

completed due to the protocol timing out. These are noted in the file results. Measured data for all

of the tests is given in the report Appendix.

Table 3. Error Vector Files Used in SGLS Transmission Tests

BER Vector File

0 infinite.dat

10 -6 a1075d.dat

10 .5 a975d.dat

10 .4 a825c.dat

For each test run, the transmission rate in the forward and return direction was the same as was the

BER on the forward and return rate.

V.2 FTP TESTS

The first battery of tests performed was the transmission of files using the TCP/IP ftp service with

-14-

PC: PC:

133 MHz 133 MNz

16 MB memory 16 MB memory

Linux O/S Linux O/SLogical Link:

SCPS or TCP/IP
over a PPP link

Physical Link:
RS-232 serial

SGLS

Simulator Physical Link:

RS-232 serial

Figure 5 - Test configuration for TCP/IP and SCPS protocol testing.

the transmission error rates mentioned above. The results of these tests are summarized in Figure

6 where the transmission times for the various file sizes are displayed as a function of data rate and

bit error rate. Each plot shows the transmission times for the 1 KB, 10 KB, 100 KB, and 1000 KB

files with the 1-KB files taking the shortest time and the 1000-KB files taking the longest time. On

each plot, the diamond marker on the y-axis represents the time to transmit the same file using the

direct null-modem cable without the SGLS in the process. This is to give a reference indication of

the best performance possible with these computers and operating system at the indicated data

transmission rate. Interesting items noted during these tests include:

a. The file transfer process at a BER of 10 -4 was generally not possible. In these cases, after

many minutes of no activity on the link, the file transfer was aborted and restarted. The only

file lengths that could be delivered were the 1-KB files. However, in each of the cases

where delivery was possible, no test completed all ten experimental rtms. The completion

-15-

"2.
O

@
E

10000T

9600Baud

1000I ..

100
i

0 0.000001 0.00001 0.0001
BER

o

G)
E

,w

I-

10000 l

1000

100

10 ,

1

0.1

19200Baud

T...T

.I

0 0.000001 0.00001 0.0001
BER

ftp-1 KB ltlMO KB

ffp-lO0KB ffl>-lOCOKB

-- rm.l KB ffp-tO KB

_p-lO0KB ftp-lO00KB

0
:)

®
E

I-

1000

100

10

0.1

57600Baud

e

4 T !

o

1000

100

10

115200Baud

1

0.1 I

/
i

/

J

0 0.000001 0.00001 0.0001 0 0.000001 0.00001 0.0001
BER BER

ftp-.1KB f_p-lOKB ftp-1KB ftp-lOKB

.......... ftp-lO_KB flp-lO00KB ftp-lO0KB ftl>lO00KB

Figure 6 - File transmission time results using the ftp service as a function of BER and baud rate.

rates were

i°

ii.

.,°

Ill.

iv.

At 9600 baud, 0 of 10 experiment runs were completed,

At 19200 baud, 8 of 10 experiment runs were completed,

At 57600 baud, 2 of 10 experiment runs were completed, and

At 115200 baud, 2 of 10 experiment runs were completed.

b. The file transfer process at a BER of l 0 6 was nearly as good as the transfer process at a BER

-16-

of 0. However, as the BER was increased to 10 "5,the transmission times rapidly increased

as expected with TCP/IP confusing link errors for link congestion.

In all cases, TCP/IP was used as configured in the default Linux configuration and no attempt was

made to vary parameters or otherwise tune the performance.

V.3 SCPS FP TESTS

The second group of tests performed was the transmission of files using the Consultative committee

for Space Data Systems (CCSDS) Space Communications Protocol Specification (SCPS) File

Protocol (fp) service [6] with the transmission error rates mentioned above. The SCPS-FP reference

implementation we are using here is version 1.1.8 developed at MITRE [7] and is used with the

default settings. The results of these tests are summarized in Figure 7 where the transmission times

for the various file sizes are displayed as a function of data rate and bit error rate. As in the tip

results, each plot shows the transmission times for the 1 KB, 10 KB, 100 KB, and 1000 KB fles

with the 1-KB files taking the shortest time and the IO00-KB files taking the longest time. On each

plot, the diamond marker on the y-axis represents the time to transmit the same file using the direct

null-modem cable without the SGLS in the process. This is to give a reference indication of the best

performance possible with these computers and operating system at the indicated data transmission

rate.. Interesting items noted during these tests include:

a. The file transfer process at a BER of 10 .4 was possible for the 1-KB. Again, for the longer

files, the transmission was aborted after many minutes of no activity on the link. As in the

TCP/IP experiments, in each of the cases where delivery was possible, no test completed all

ten experimental runs. The completion rates were than TCP/IP and were as follows:

i. At 9600 baud, 0 of 10 experiment runs were completed,

ii. At 19200 baud, 8 of 10 experiment runs were completed,

iii. At 57600 baud, 6 of 10 experiment runs were completed, and

-17-

10000

I000

o

100

10

9600Baud

$..

- T-

O 0.000001 0.00001

BER

0.0001

19200Baud

IOOO

o
(D

._E
I--

100

10

0

/
0.000001 0.00001 0.0001

BER

fp-I KB fp-lOKB fp-1KB fp-lOKB

fp-IOOKB --- fp-lOOOKB fp-lOOKB fp-IOOOKB

0

._E
t-

57600Baud
1000

100

10

1

IF

0.1-

o

E

1000

100 -,-

10

115200Baud

/

/
[r l 0.1° _ T

0 0.000001 0.00001 0.0001 0 0.000001 0.00001 0.0001

BER BER

fp-lKB ----- _-IOKB -- flP1KB ----- fp-lOKB

.......... fp-lO0KEI fp-lO00KB fp-lOOKB fp-lO00KB

Figure 7 - File transmission time results using the fp service as a function of BER and baud rate.

iv. At 115200 baud, 5 of 10 experiment runs were completed.

b. As with the TCP/IP ftp service, the file transfer process at a BER of 10 .6 was nearly as good

as the transfer process at a BER of 0. However, as the BER was increased to 10 -s, the

transmission times for SCPS fp did not show the same rapid increased as the TCP/IP ftp

times did. This is expected due to the more appropriate way in which SCPS handles the

-18-

channel errors and does not treat them as congestion and therefore slow down the link. Not

all of the SCPS fp experiments were able to complete ten trials at a BER of 10 5. This was

a problem for the 100-KB and 1000-KB file lengths as follows:

i.

ii.

.°°

111.

At 9600 baud, only 9 of the 10 experiments with the 100-KB files completed,

At 19200 baud, only 9 of 10 experiments completed with both the 100-KB and 1000-

KB files, and

At 115200 baud, only 9 of 10 experiments completed with the 1000-KB files.

In all experiments, the SCPS fp protocol parameters were left at the default settings provided by

MITRE and no attempt was made to optimize the settings.

We show a comparison of the TCP/IP Rp service and the SCPS fp service transmission delay times

in Figure 8. As we can see, at the low BER configurations, both ftp and fp have essentially the same

transmission times. As the BER increases, the effects of the congestion algorithm in the TCP/IP tip

service can be seen because the transmission time rapidly increases at a BER of 10 -5. The SCPS fp

protocol does a better job of maintaining a transmission time similar to the no-error case at this

BER. The BER of 10 .4 cases do not represent a good comparison because both protocols had great

difficulty in maintaining a connection at this BER and the number of completed file transfers is very

small.

-19-

o
@

._E

I0000
9600Baud

tOO0

100

I0

I I

O.OOOO01 0.00001 0.0001
BER

+tKB

.......... rm-'_+ KB

-1o i

-- _IKB

..... _p-fooo_

.......... rp-lOOKB

----- _p-lo KS

o
©

.E
I--

I0000_
10004

19200Baud

0 0.000001 O.OO001 0.0001
BER

..... fp-loooKB _ ftP-1KB /tp,,-loKB
.......... _1oe _ _tooo KB

1000

100

10

1000

o

a}

.E
t--

115200Baud

0.1 -r- T

0 0.000001
BER

_-1 KB -- -- - _-Io K8 _100 KB

..... fp-IOOOKB _ ftp-ll(B ----- Rp-IOKB _ fp-IKB ----- fp-IOKB fp-IOOKB

......... f_-100 KB ftp-l(_6OKS fp-1000KB _ 11_-IKB ftp-fOKB
.......... i_1oo KB f_,-1000KB

Figure 8 - Relative transmission times for fiT>and fp as a function of file size and BER.

lO0

10 _::': ":;;:'_:_

T....... ! 0.1 r 1

O.OOOOl 0,0001 O 0,000001 0.00001 0,0001
BER

-20-

SECTION VI - SUMMARY AND CONCLUSIONS

A Virtual Instrument was constructed to realize a Space-to-Ground Link Simulator (SGLS) for

performing baseband networking tests. In these initial tests the TCP/IP ftp and SCPS fp file transfer

protocols were used with the SGLS simulator. Channel bit errors rates from 0 through 10 .4 were

used. The source and destination host computers were modest PC-class computers running the

Linux operating system. The general results were found to be

a. Both protocols have transmission troubles at BER of 10.4. The SCPS fp did better at file

delivery in the large error environment in that a larger percentage of the 1-KB files were able

to be transmitted but both protocols had problems in transferring files larger than 1 KB this

error rate.

b. At low a BER of 10 .6 or better, both protocols ran at about the same speed (to within

statistical variations).

c. At a BER of 10 5, the TCP/IP ftp protocol showed a significant degradation in performance

in that a significantly longer transmission time was required than in the no-error case and

longer than that required for the SCPS fp protocol. The SCPS protocol did show some trends

not being able to complete a transmission at this BER with longer files than the TCP/IP ftp

service did. However, with only 10 trials, this many not be a significant difference.

Based on these limited experiments, we conclude that both protocols work equally well in a low-

error-rate environment. With bit error rates exceeding 10 6, the SCPS fp protocol appears superior

because the transmission time does not grow rapidly as does the TCP/IP ftp transmission time as the

errors corrupt the packets. In high-error-rate environments, packets need to be kept short,

approximately 1KB at most, to ensure a reasonable chance of data delivery.

-21-

SECTION VII - REFERENCES

[1] National Instruments TM, LabVIEW TM, version 5, Austin, Texas, January 1998.

[2] Lynde, W. H. and Horan, S., "Space Protocol Test and Evaluation Project," NMSU-ECE-96-

004, April 1996.

[3] Moser, J. C. and Osborne, W. P., "Error Pattern Generation for Coded BPSK," NMSU-ECE-95-

007, August 1995.

[4]Sklar, B., Digital Communications Fundamentals and Applications, Prentice-Hall: Englewood

Cliffs, NJ, 1988, p.276.

[5] ibid., p. 156.

[6] Consultative Committee for Space Data Systems, "Space Communications Protocol Specifica-

tion (SCPS) - File Protocol (SCPS-FP)," CCSDS 717.0-R-3, September 1997.

[7] Feighery, P., private communication.

-22-

!

ooo

_0 _

000

0 0

000

_ .-

ooo

ooo
o')o'3(.o
o_'-
%--- %--" (_4

ooo

_ o_o

O.

0
0
CO
O_

ii

CO

I"- o')
f,_.I'.,.-o')

o o

(_ (',4
I--._o
u') {.D

O

o
o') oo i,..

It')

c5oo

OooO

o o') o'_ O)

c5o

. _

o
• __

O) O)O_,

OOO
m

U.l¢O o

I,.I. 0

"_ _ _..--.r-0

D.. u.. l.IJ

o

°_i,,")

o

o'_ co

r,--
Lo (D .._-

(,,,o_°
r--_ c0cO

O(O "
(6,6,T-
_ (_) ,_,--

o
o o)

o _.o

o

A

O_
r_

0
0
O_
O_

°°

m

A

Qr.O

"" LO

Eo

T--

000

00_

oQ6

_0

0_

_0
0_

00

O_

._
0

CO
cO

OcO

I_ o >(D
u. <_,

D. U- UJ

wwo.
_-" 0

o0_

0

0

_0

00_

°--

_00

.0_

°<Od_

•- _o o
t_ _. 0 LU ijj 0

u-w

0
0
0

"-0

o')o_

_od

o,I c_l o.)

c_c_ od

¢o 0o _O

o') o_ ,r-

00 00

od_d TM

Qd

OO O,I _-

O,I O,I (.O

o")O4oO
OO O,I '_"
_'-" O_l LO

CO CO _O
cO O') _'-
'T-" O,I LO

O_ I_.

Or) . O_
c;Oc_

¢o ¢o 0o

o') oo .,r- _o
o,I ',_- (o

o') '_"- co

o') I'_
--_o4
O') . O")

A

_O") .O")
Edod

o_
I--

_o')

_o co i,o

.. co o') o')

_ _ od _d

I--

_ 0o o') o')
_ '_'- _- o)
m, od od o_

I_ OO OO COv

E e_,.o
I--

_d _ co
r', o_ o_ ,.o

LO _" .r-
CO '_" O
•,-- O_ LO

v

I_ b-. t'N

('¢3 _') _')
ed _ "-" ,4 e,i _

("4 0") _O
_"O rZ

-_ oo d

_CN

_ ,e.- C,,I
_"- (N tO

h.. •
_ dOorq

_,- ooo

_. m. c,i

e6

_ o

u6

o _o _co I'-..
o > T- ,_. ,,_,-

•_ L o _LI LI.I

r6oo
t",l _ (.O

•e- 1_

O i_.. ,_.--

O

t,_ o __/ IM o

0,_ b.. LO

co I'_ o,I
¢o o I_.
'_'-- o_1 _1-

(.o u') ¢o

_i_l LOLOO_' o') ._..-
o_ 0 P--

o
o oJ o') eo
o O1 •
o >. 0o _ _-

U.,I

.,Q

0
0
CO
r_
u')

000

NN_

0_

000_

_o

o_
ood_

0 _

0_0_

ddO0

o6O _

0. _

ooo_

ooO_

t_ o4

c5Oc_

ooc5

_. co co

,_O_

O4 1_ Cb

Ob _.-- OO

O,I
(O CO t,_

OOc5
OCO OJ O,10

cd<d_
o_. oo 0D
0o T.- O
o_ _-.- o_

o
ooc5

A

.Eo°o
I--

m _ t,- r--

(O (O o0

'_" "_" 00

A

,m
I-

IZI T- _--- (xl

x-,,- ,_- (_O

A

I-

_--" 'r- ,r-

o.) _-- C)
O_ ,m o0

A

v ,

E
i--

t'_ O_ ,'- 00

". _O _O
00 _- ¢xl

.a c_ c_ c_

o
o

OOOO

ooo
000_

doo N

•-_ o_o

•e'- ,e- L_

•e- 'r- 1._

O
oo_

o

.-_ ooO

_o_o o

(NIT'- ',e--

o
o _--_

o _:,_
0 _- _._ ¢,,.)

.,
_u3

_ T'- ',e-,e- ¢¢1

o_ o o'_
'_- _1

_.o _o

° __o

_ _-° u5 ,,', °

doo

o

_06o

__o
6ood

0000

o dO

0 __

000_

_0

00

0oo©

ooo_

0 _
_.- 9_o

mt_
CSo o

o 0') _" cxl

o _,c_o _--'_
o,_,,_" r_ _0

NI_ (0_0 '_-
0

,. o,,,,
-- 0

o _o o_ I'_-
o _0 a0 I_.
o I_O o_ _o
o _ _" _'- _.0

0 O0 _

•--N(z O0

_S
!

